Calcium hydride and its precautions

What is Calcium Hydride? Calcium Hydride CaH2 is an inorganic compound with a molecular formula of 42.10. These crystals are grayish-white and easily deliquescent. They can be used as reducing agent, desiccants or chemical analysis reagents. Also known as a colorless orthorhombic crystal, industrial products can be gray, powdered or orthorhombic. It is sensitive to moisture. It doesn’t react with nitrogen or chlorine in the air at room temperatures. However, at high temperature, it can generate calcium chloride, calcium nitride and calcium oxide. It releases hydrogen when it reacts with water. It can also produce calcium ethoxide when it reacts with ethanol. The reduction effect of metal oxides on sodium hydride and lithium hydride is much stronger.
What is the danger of calcium hydride to human health?
The skin, mucous tissues, and upper respiratory tract are all highly sensitive to calcium hydride. It can cause death after inhalation due to spasms and inflammation. Contact with it can cause burning sensations, wheezing or laryngitis.
Protective measures against calcium hydride
Respiratory Protection: If you think you might be exposed to poisons or dust, wear a dust-proof, electric air-supply-filter hood. Wearing a self contained breathing apparatus is recommended when needed.
Eye protection: Protected by respiratory protection.
Wear protective clothing to protect your body from chemicals.
Hand protection: Wear rubber gloves
Other: Smoking at work is strictly forbidden. Attention to personal hygiene.
What should I be doing if I accidentally get in contact with calcium hydroide?
Skin contact: Remove all contaminated clothing as soon as possible and rinse thoroughly with running water for atleast 15 minutes. Seek medical attention.
Eye contact: Remove the eyelid as soon as possible and thoroughly rinse with lots of water or saline solution for at least 15 min. Seek medical attention.
Inhalation – leave the scene immediately to get fresh air. Airways should be kept clear. Oxygen is recommended if breathing becomes difficult. If breathing stops, you should immediately start artificial respiration. Seek medical attention.
If accidentally ingested, rinse mouth with milk or eggwhite and do not drink it. Seek medical attention.
What to do in the event of a calcium hydride spill?
Access to the contaminated area should be restricted. Remove the fire source. It is advised that emergency personnel wear self contained breathing apparatus as well as acid-alkali proof overalls. Avoid touching the spillage. Use non-sparking, dust-free tools to collect the small amount. Place the container in a safe location. Leakage in large quantities: Cover the leakage with canvas and plastic sheet to reduce dispersion. Contact the relevant technical departments to determine the removal technique.

(aka. Technology Co. Ltd., a trusted global chemical supplier & manufacturer has over 12 years experience in providing super-high-quality chemicals & Nanomaterials. The Calcium Hydride Please note that the products produced by our company are of high purity and have low impurities. Please. Contact us if necessary.

Calcium hydride is widely used as a desiccant for alkaline solvents

What is Calcium Hydride? Calcium hydride, also known as CaH2, is a compound that has the chemical symbol CaH2. This makes it an alkaline-earth metal hydride. This powder is gray, but it can also be white. It reacts violently when water comes in contact with it and releases hydrogen. CaH2 has been used for desiccant.

CaH2 has a structure similar to that of salt. During the Battle of the Atlantic German subs used calcium hydroide as a decoy sonar called bold. Alkali metals, alkaline earths metals, and beryllium are all heavier than each other and produce hydrogen halides. The sodium hydride master mold is a well-known example. They are insoluble with all solvents which do not react. Crystals of CaH2 have a structure similar to PbCl2 or perovskite.
Why is calcium hydrolith called Hydrolith
CaH2 (brine hydride) is known as hydrolith because it has a structure similar to that of salt. Sodium hydride is formed by alkali metals as well as alkaline earth elements.

What is calcium hydride used for?
It is more safe to use than more reactive reagents. It is used widely as a desiccant in alkaline solvants such as amines, pyridine and sodium metal. It can be used to dehydrate alcohol.

Reduced metal oxide
CaH2 is used to reduce metal oxides Ti, V., Nb., Ta. and U. Decomposition into Ca metal is recommended for operation.
TiO2 + two CaH2-Ti plus two CaO + two H2

Hydrogen source
CaH2 was used to make hydrogen. In the 1940s it was used to produce hydrogen under the name “Hydrolith”.

Hydrolith is the trade name for this compound. In an emergency it can be used to fill up the airship with portable hydrogen. This usage is expensive.

This may be a reference for wartime. The compound has been used as a safe, convenient way to inflate the weather balloons for many decades. In the lab, small amounts are produced to conduct experiments.
Desiccant
CaH2 and water react as follows.
CaH2 + 2 H2O-Ca(OH)2 + 2 H2
The dry solvent can be easily separated into two hydrolysis products: H2 gaseous and Ca(OH).

Calcium hydride, a mild desiccant, may not be as efficient as molecular Sieves. It is safer than using more reactants like sodium metal or sodium potassium alloy. It is used widely as a dehydratant for alkaline solvants such as amines, pyridine and sodium metal. It is used to dry alcohol.

CaH2 can be a convenient material, but it has its own disadvantages.
As compared with LiAlH4, its drying rate may be slower. CaH2 has a similar appearance to Ca(OH), so its quality is not readily apparent.

What happens if you add water and calcium hydride together?
Calcium hydride reacts violently (CaH2) with water, releasing hydrogen. The hydrolysis of CaH2 by ethanol in solution has a lower energy activation than other reactions.

How can you make calcium hydroxide?
Calcium hydride may be made by reacting dry hydrogen with calcium metal between 300degC and 400degC.
One way to prepare calcium hydroide is by heating calcium chloride, hydrogen and sodium. The reaction is triggered by:
CaCl2+H2 + 2 na-CaH2+2 NaCl
In this reaction sodium atoms with chlorine and calcium (Ca), form sodium chloride molecule.

Magnesium (Mg) can be reduced with calcium oxide (CaO), resulting in the production of calcium hydride. The reaction occurs in the presence hydrogen. This reaction produces also magnesium oxide. The chemical reaction is represented by the following formula:
CaO + Mg + CaH2 + MgO

What is the type of bond that calcium hydride has?
The ionic hydroide reacts violently to remove the hydrogen (H2). The dihydrohydrides consist of only hydrogen, one other element, and water. They are usually in the form MH2 (or MH3), such as magnesium hydride, sodium hydride, lithium hydride, calcium hydride, or calcium hydride.

Unstable calcium hydroide as a high-temperature thermal cell with promise
CaH2 is a candidate that has a high energy density (thermal batteries), and it’s low cost makes it ideally suited for this type of energy storage. Its high operating temperature and low cycle stability have been the major factors in its failure to be developed and implemented as a CSP factory thermal cell. In this study, alumina was used at a 1:1 molar ratio to thermodynamically stabilise CaH2, releasing hydrogen with a lower temperature.
Temperature-programmed desorption measurements show that compared with the decomposition of pure CaH2 to about 1000degC under 1 bar of hydrogen pressure, the addition of Al2O3 will lower the decomposition temperature to ~600degC, thereby making the reaction thermodynamically unstable for the release of hydrogen from CaH2. The pressure component of the isotherm between 612 and636degC determines the experimental entropy (and enthalpy) of the system.
Entropy for H2 is measured using DSdes=110+-2 J*K-1 mol-1. Ca12Al14O33 was confirmed by the XRD after TPD. SEM and XRD confirmed that there was a loss of capacity during the hydrogen-cycle at 636degC. The system’s capacity loss is caused by the excess Al2O3 sintering. Hydrogen cycle capacity was improved by reducing initial Al2O3 and achieving a CaH2:Al2O3 molar proportion of 2:1. This is a high-temperature, thermal battery that has great potential for the next CSP generation.
(aka. Technology Co. Ltd., a trusted global chemical supplier and manufacturer with more than 12 years of experience in providing high-quality Nanomaterials and chemicals. Currently, we have developed a number of materials. Our calcium hydride is high-purity, with fine particles and low impurity. Click the desired products or send us an e-mail. Sending an inquiry .