Silica Aerogel Research and Application

Aerogel is the name of a Nano-scale solid material made by the Sol-gel method. This method uses a drying method that replaces the liquid phase with gas. Such as gelatin, gum Arabic, silica aerogel , hair, nails, etc. Aerogels are also gels with swelling, thixotropy or de-sizing properties.Aerogel, a dense material form is the smallest in the world. The density is three kilograms per cubic foot. The most common aerogel type is silicon aerogel. There are several types of aerogels including silicon, sulfur, metal oxides, metal, etc. Aerogel, a compound term, is made up of aero as an adjective which means flying. Gel is obviously gel. Literally translates to a flying jelly. Any gel can be called aerogel, as long as the gel can be dried out and separated from the solvent inside, but still retain its shape.
Preparation of silica Aerogel
S. Kistler named Aerogel. S. Kistler was the first to name Aerogel. silica aerogel He defined aerogel by supercritical method as the material that is obtained by supercritically dry wet gel. Aerogels were defined in the mid-to late 1990s with the advent and development of atmospheric dry technology. The aerogel structure is a cylinder multi-branched Nano-porous three-positions network with high permeability. The bulk density can be adjusted between 0.003-0.500 grams/cm-3. (The density is 0.00129g/cm3)

In most cases, the preparation of aerogel involves a sol gel process and a process of supercritical drying. Sol-gel is a process that involves forming nanoclusters in a solution by controlling the reaction conditions. These clusters then adhere together and form a gel. To prevent damage to material structures caused by surface tension within the micropores, the supercritical process is used. Gel is placed into a pressure container to increase temperature and pressure, causing the liquid to phase change to supercritical fluid. Surface tension is no longer present. At this point, the supercritical liquid is removed from the pressure vessel. A porous, disordered gas with a continuous nano-scale network structure is then obtained. Material gel.

As a thermal insulation material
The nano-network structure in silicon aerogel is so thin that it effectively limits local thermal excitation. In addition, its thermal conductivity at solid state is 2 to 3 orders of magnitude less than glassy materials. Nano-pores prevent gas molecules from contributing to heat conduction. The silicone aerogel’s refractive indices is very close to one, and its annihilation factor for both infrared and visual light is greater than 100. It transmits sunlight well and blocks infrared radiation, making it a great transparent thermal insulation. It is used in the solar energy usage and energy-saving of buildings. The radiant heat conduction in silicon aerogel is further reduced by doping. At room temperature and under pressure, the thermal conductivity for carbon-doped aerospace gel can be as low 0.013 w/m K. This is the lowest solid thermal conductivity. As a replacement for polyurethane, it is expected that this material will be used to insulate refrigerators. Silicon aerogel, when combined with titanium dioxide, can become a new high-temperature thermal insulating material. The thermal conductivity of the material at 800K only is 0.03w/mK. This new material will be used for military applications.
The low sound speed of the sonic wave is one of its main characteristics. silicon aerogel The material is ideal for acoustic delay and high temperature sound insulation. It has a wide acoustic-impedance range (103 – 107 kg/m2 s) and is therefore an ideal material to use as a coupling for ultrasonic sensors. As an example, acoustic turns Zp = 1 are commonly used as acoustic resistance. It is possible to use ultrasonic detectors or generators that are 5 x L07 kg / Piezoelectric m2*s thick, but the air’s acoustic resistant is only 400kg / m2*s. A silicon aerogel of 1/4 wavelength can be used as a coupling between the piezoelectric ceramics. It can improve sound wave transmission efficiency and reduce signal-to noise ratio in device application. Experimental results indicate that using silica with a 300 kg/m3 density as a coupling medium can increase sound intensities by 30 dB. Silica aerogels with a density gradient can result in a greater increase in sound intensity.
In the chemical and environmental industries. Aerogels with nanostructures can be used to filter gas in a different way. The material is unique in that it has uniform pore sizes and high porosity. It is an efficient gas filter material. It is a material that is much larger than the standard table. Aerogels have a wide range of applications as new catalysts and catalyst carriers.

(aka. Technology Co. Ltd., a trusted global chemical supplier and manufacturer has over 12 years experience in providing super-high-quality chemicals. The silicone aerogel The products produced by our company are high in purity, have fine particles and contain low impurities. Contact us if you have any questions.